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Rotor Design of IPMSM Traction Motor Based on Multi-
Objective Optimization using BFGS Method and Train 
Motion Equations 
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Abstract: In this paper a multi-objective optimal design method of Interior Permanent 
Magnet Synchronous Motor (IPMSM) for traction applications so as to maximize average 
torque and to minimize torque ripple has been presented. Based on train motion equations 
and physical properties of train, desired specifications such as steady state speed, rated 
output power, acceleration time and rated speed of traction motor are related to each other. 
By considering the same output power, steady state speed, rated voltage, rated current and 
different acceleration time for a specified train, multi-objective optimal design has been 
performed by Broyden–Fletcher–Goldfarb–Shanno (BFGS) method and Finite Element 
Method (FEM) has been chosen as an analysis tool. BFGS method is one of Quasi Newton 
methods and is counted in classic approaches. Classic optimization methods are appropriate 
when FEM is applied as an analysis tool and objective function isn’t expressed in closed 
form in terms of optimization variables. 
 
Keywords: Broyden–Fletcher–Goldfarb–Shanno (BFGS) Method, Interior Permanent 
Magnet Synchronous Motor (IPMSM), Multi-Objective Optimal Design, Quasi Newton 
Methods. 

 
 
 
1 Introduction1 
Nowadays, since wheel-rail technology in comparison 
to MAGLEV technology imposes lower cost, is so 
common over the world. Wheel-rail technology uses 
rotating motors while MAGLEV technology uses linear 
motors. Linear electric motors in large scales, lead to 
more complicated and more expensive structure. 
IPMSM as a rotating electric motor, due to properties 
such as high efficiency, high torque density and 
appropriate flux weakening operation, has been 
introduced as a competent alternative of induction 
motor in industry particularly in traction applications. 
Traction applications require high torque density and 
low torque ripple [1]. As regards average torque and 
torque ripple of IPMSM are severely affected by rotor 
parameters such as permanent magnet dimension and 
permanent magnet position, multi-objective optimal 
design of IPMSM in order to approach the mentioned 
purposes is crucial. To precisely calculate 
electromagnetic characters such as average torque and 
torque ripple, finite element analysis is needed. Since in 
this case there isn’t any explicit relation between 
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objective function and optimization variables, classic 
optimization methods such as BFGS are more 
appropriate than heuristic methods. Although [2-8] have 
dealt to optimal design of permanent magnet 
synchronous motors, it is vital to investigate the desired 
requirements of application, in particular, requirements 
of traction applications. Investigation in form of 
comparison gives a proper view to study the influence 
of desired requirements on traction motor design. For 
instance in high speed railway traction system, train 
physical properties and maximum speed in two cases 
are considered the same and modification of 
acceleration time is investigated. So as to perform an 
appropriate comparison between two cases, particular 
conditions should be taken into consideration. 

In this paper according to train physical 
specifications, desired system requirements such as 
acceleration time and maximum speed and based on 
train motion equations, rated output power and rated 
speed of traction motor is determined. For two cases of 
study, only acceleration time is modified. Hence rated 
speed of two considered cases according to train motion 
equations are different. By assuming the same rated 
voltage and rated current for two cases of study, multi-
objective optimal design is carried out by BFGS method 
and finite element analysis is used as an analysis tool. 
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calculated then by Eq. (10) rated speed of traction motor 
in terms of rpm is determined. 
ܰ ൌ ଺଴ ௏೙

గ஽ೢ
 (10)  ܴܩ 

Consequently, calculated rated speed of traction 
motor corresponding to case 1 and case 2 is equal to 
2369 rpm and 1200 rpm, respectively. 
 
4 Multi-Objective Optimal Design of Rotor 
 
4.1  Objective Function and Optimization Variables 

Since the purpose of optimal design is to maximize 
average torque and to minimize torque ripple, objective 
function is proposed as Eq. (11). 
݂ ൌ ଵܹ൫ ௔ܶ௩ ሺ௡௢௥௠௔௟௜௭௘ௗሻ െ ଵ൯ଶܩ ൅ (11) 
            ଶܹ൫ ௥ܶ௜௣௣௟௘ ሺ௡௢௥௠௔௟௜௭௘ௗሻ െ  ଶ൯ଶܩ
where W1 and W2 stand for weighting value of average 
torque and torque ripple that are set to 1 and 2 
respectively. G1 and G2 imply on desired value of 
normalized average torque and normalized torque ripple 
respectively. Tav denotes average torque and Tripple 
denotes torque ripple that is defined as Eq. (12). 

T୰୧୮୮୪ୣ ൌ ೘்ೌೣିTౣ౟౤
T౗౬

 (12) 

Normalized value of average torque and torque 
ripple should be chosen such a value between 1 up to 
10. As such G1 and G2 are considered to 10 and 1 
respectively. 

Variation interval of introduced variables X1, X2 ,X3, 
X4, X5 and X6 for two specialized cases are 
demonstrated in Table 2. 
 
4.2  Multi-objective Optimization by BFGS Method 

BFGS optimization method carries out optimization 
based on second order Taylor expansion of 
multivariable function f at vicinity of vector Xk and is 
presented as Eq. (13) [11]. 

m୩ሺPሻ ൌ f୩ ൅ PT׏f୩ ൅ ଵ
ଶ

PTB୩P  (13) 

where Bk is known as Hessian Matrix of f in Kth 
iteration. By exerting gradient operator to both sides of 
Eq. (13), minimum point can be stated as Eq. (14): 
P୩ ൌ െB୩

ିଵ׏f୩ ൌ െH୩׏f୩ (14) 
where Pk stands for search direction in kth iteration. in 
order to calculate P0, assumption of H0=I could be 
acceptable. Eq. (15) represents the updating relation that 
is exerted on optimizer variables where αk is determined 
by line search. 
Xk+1=Xk+αk Pk (15) 

By defining Sk and Yk as Eq. (16) and Eq. (17) 
respectively, inverse of Hessian matrix in iteration of 
k+1 is updated by Eq. (18) [11]. 
ܵ୩ ൌ α୩P୩ ൌ X୩ାଵ െ X୩  (16) 
Y୩ ൌ f୩ାଵ׏ െ  f୩ (17)׏

H୩ାଵ ൌ H୩ ൅ ൫Sౡ
TYౡାYౡ

THౡYౡ൯൫Sౡ
TSౡ൯

൫Sౡ
TYౡ൯

మ െ HౡYౡSౡ
TାSౡYౡ

THౡ
Sౡ

TYౡ
 (18) 

Table 2 Demonstration of optimization variables for two 
specialized cases. 

Variable Case study 1 Case study 2 unit From To From to 
X1 25 40 25 40 deg 
X2 19.5 25.5 29 38.5 mm 
X3 2 5.5 3 8.5 mm 
X4 55 65 82 97.5 mm 
X5 5 8.5 7 13 mm 
X6 30 50 44 75 mm 

 
4.3  Optimization Results 

By considering the stator specifications for two 
investigated cases which are tabulated in Table 3 and 
according to variation interval for optimization 
variables, multi-objective optimization is performed. 
Outcome of multi-objective optimization and optimizer 
values for two studied cases are presented in Table 4. 
 
Table 3 Stator specifications for two investigated cases. 

Quantity 
Value 

unit Case 
study 1 

Case 
study 2 

Stator stack length 504 445 mm 
Stator bore diameter 192 288 mm 
Stator yoke diameter 283.5 425 mm 

Air gap length 2 4 mm 
Number of stator 

slots 36 36 - 

Number of poles 6 6 - 
Number of turns per 

phase 48 72 - 

Rated phase current 
(rms) 169.7 169.7 A 

Rated phase voltage 
(rms) 606 606 V 

Phase connection Y Y - 
Rated frequency 118.45 60 Hz 

Type of permanent 
magnet Nd-Fe-B Nd-Fe-B - 

Rated speed 2369 1200 rpm 
Maximum speed 2369 2369 rpm 
Conductor cross 

section 26.67 38.59 mm2 

Permanent magnet 
residual flux density 1.23 1.23 T 

Relative permeability 
of magnet 1.09 1.09 - 

 
Table 4 Demonstration of optimization results. 

variable value unit Case study 1 Case study 2 
X1 30 30 deg 
X2 24.6 36.8 mm 
X3 5 7.5 mm 
X4 59.9 179.7 mm 
X5 6.9 10.4 mm 
X6 42 63 mm 
Tav 1009 1990 N.m 

Tripple 5.82 6.18 Percent 
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